
Chapter 32

Dynamic Causal Modeling for
fMRI

32.1 Theoretical background

Dynamic Causal Modelling (DCM) is a method for making inferences about neural processes that
underlie measured time series, e.g. fMRI data. The general idea is to estimate the parameters of a
reasonably realistic neuronal system model such that the predicted blood oxygen level dependent
(BOLD) signal, which results from converting the modeled neural dynamics into hemodynamic
responses, corresponds as closely as possible to the observed BOLD time series. This section gives
a short introduction to the theoretical background of DCM for fMRI; details can be found in [29].
Note that DCMs can be formulated, in principle, for any measurement technique. Depending on
the spatio-temporal properties of a given measurement technique, one needs to define an adequate
state equation and an observation model. See Fig 32.1 for a summary of the differences between
DCM implementations for fMRI and Event-Related Potentials (ERPs).

Figure 32.1: A schematic overview of the differences between between the DCM implementations
for fMRI and ERPs (as measured by EEG or MEG). Whereas the state equation of DCM for
fMRI is bilinear and uses only a single state variable per region, that for ERPs is more complex
and requires 8 state variables per region. Moreover, DCM for ERPs models the delays of activity
propagation between areas. At the level of the observation model, DCM for fMRI is more complex
than DCM for ERPs. While the former uses a non-linear model of the hemodynamic response
that contains a cascade of differential equations with five state variables per region, the latter uses
a simple linear model for predicting observed scalp data.
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As in state-space models, two distinct levels constitute a DCM (see Figure 32.2). The hidden
level, which cannot be directly observed using fMRI, represents a simple model of neural dynamics
in a system of k coupled brain regions. Each system element i is represented by a single state
variable zi, and the dynamics of the system is described by the change of the neural state vector
over time.

The neural state variables do not correspond directly to any common neurophysiological mea-
surement (such as spiking rates or local field potentials) but represent a summary index of neural
population dynamics in the respective regions. Importantly, DCM models how the neural dynam-
ics are driven by external perturbations that result from experimentally controlled manipulations.
These perturbations are described by means of external inputs u that enter the model in two dif-
ferent ways: they can elicit responses through direct influences on specific regions (“driving”
inputs, e.g. evoked responses in early sensory areas) or they can change the strength of coupling
among regions (“modulatory” inputs, e.g. during learning or attention).

Overall, DCM models the temporal evolution of the neural state vector, i.e. , as a function of
the current state, the inputs u and some parameters that define the functional architecture and
interactions among brain regions at a neuronal level (n denotes “neural”):⎡

⎢⎢⎣
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dt
= F (z, u, θn) (32.1)

In this neural state equation, the state z and the inputs u are time-dependent whereas the
parameters are time-invariant. In DCM, F has the bilinear form

ż = Az +
m∑

j=1

ujBjz + Cu (32.2)

The parameters of this bilinear neural state equation, θn = {A, B1, ..., Bm, C}, can be expressed
as partial derivatives of F :
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(32.3)
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These parameter matrices describe the nature of the three causal components which underlie the
modeled neural dynamics: (i) context-independent effective connectivity among brain regions,
mediated by anatomical connections (k×k matrix A), (ii) context-dependent changes in effective
connectivity induced by the jth input uj (k×k matrices B1, ..., Bm), and (iii) direct inputs into the
system that drive regional activity (k×m matrix C). As will be demonstrated below, the posterior
distributions of these parameters can inform us about the impact that different mechanisms
have on determining the dynamics of the model. Notably, the distinction between “driving”
and “modulatory” is neurobiologically relevant: driving inputs exert their effects through direct
synaptic responses in the target area, whereas modulatory inputs change synaptic responses in
the target area in response to inputs from another area. This distinction represents an analogy,
at the level of large neural populations, to the concept of driving and modulatory afferents in
studies of single neurons.

DCM combines this model of neural dynamics with a biophysically plausible and experimen-
tally validated hemodynamic model that describes the transformation of neuronal activity into
a BOLD response. This so-called “Balloon model” was initially formulated by Buxton and col-
leagues and later extended by [31]. Briefly summarized, it consists of a set of differential equations
that describe the relations between four hemodynamic state variables, using five parameters (θh).
More specifically, changes in neural activity elicit a vasodilatory signal that leads to increases in
blood flow and subsequently to changes in blood volume v and deoxyhemoglobin content q. The
predicted BOLD signal y is a non-linear function of blood volume and deoxyhemoglobine content.
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Figure 32.2: Schematic summary of the conceptual basis of DCM. The dynamics in a system of
interacting neuronal populations (orange boxes), which are not directly observable by fMRI, is
modeled using a bilinear state equation (grey box). Integrating the state equation gives predicted
neural dynamics (z) that enter a model of the hemodynamic response (λ) to give predicted BOLD
responses (y) (green boxes). The parameters at both neural and hemodynamic levels are adjusted
such that the differences between predicted and measured BOLD series are minimized. Critically,
the neural dynamics are determined by experimental manipulations. These enter the model in
the form of “external” or “driving” inputs. Driving inputs (u1; e.g. sensory stimuli) elicit local
responses directly that are propagated through the system according to the intrinsic connections.
The strengths of these connections can be changed by modulatory inputs (u2; e.g. changes in
cognitive set, attention, or learning).

Details of the hemodynamic model can be found in other publications [31]. By combining the
neural and hemodynamic states into a joint state vector x and the neural and hemodynamic
parameters into a joint parameter vector θ = [θn, θh]T , we obtain the full forward model that is
defined by the neural and hemodynamic state equations

ẋ = F (x, u, θ) (32.4)
y = λ(x)

For any given set of parameters θ and inputs u, the joint state equation can be integrated and
passed through the output nonlinearity λ to give a predicted BOLD response h(u, θ). This can
be extended to an observation model that includes observation error e and confounding effects X
(e.g. scanner-related low-frequency drifts):

y = h(u, θ) + Xβ + e (32.5)

This formulation is the basis for estimating the neural and hemodynamic parameters from the
measured BOLD data, using a fully Bayesian approach with empirical priors for the hemodynamic
parameters and conservative shrinkage priors for the neural coupling parameters.

Details of the parameter estimation scheme, which rests on a Fisher scoring gradient ascent
scheme with Levenburg-Marquardt regularisation, embedded in an expectation maximization
(EM) algorithm, can be found in the original DCM publication (Friston et al. 2003). In brief,
under Gaussian assumptions about the posterior distributions, this scheme returns the posterior
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expectations ηθ|y and posterior covariance Cθ|y for the parameters as well as hyperparameters for
the covariance of the observation noise, Ce.

After fitting the model to measured BOLD data, the posterior distributions of the parameters
can be used to test hypotheses about the size and nature of effects at the neural level. Although
inferences could be made about any of the parameters in the model, hypothesis testing usually
concerns context-dependent changes in coupling (i.e. specific parameters from the B matrices;
see Fig. 32.7). As will be demonstrated below, at the single-subject level, these inferences concern
the question of how certain one can be that a particular parameter or, more generally, a contrast
of parameters, cT ηθ|y, exceeds a particular threshold γ (e.g. zero).

Under the assumptions of the Laplace approximation, this is easy to test (ΦN denotes the
cumulative normal distribution):

p(cT ηθ|y > γ) = ΦN

(
cT ηθ|y − γ

cT Cθ|yc

)
(32.6)

For example, for the special case cT ηθ|y = γ the probability is p(cT ηθ|y > γ) = 0.5, i.e. it is equally
likely that the parameter is smaller or larger than the chosen threshold γ. We conclude this section
on the theoretical foundations of DCM by noting that the parameters can be understood as rate
constants (units: 1/s = Hz) of neural population responses that have an exponential nature. This
is easily understood if one considers that the solution to a linear ordinary differential equation of
the form ż = Az is an exponential function (see Fig. 32.3).

Figure 32.3: A short mathematical demonstration, using a simple linear first-order differential
equation as an example, explaining why the coupling parameters in a DCM are inversely propor-
tional to the half-life of the modelled neural responses and are therefore in units of 1/s = Hertz.

32.2 Bayesian model selection

A generic problem encountered by any kind of modeling approach is the question of model se-
lection: given some observed data, which of several alternative models is the optimal one? This
problem is not trivial because the decision cannot be made solely by comparing the relative fit of
the competing models. One also needs to take into account the relative complexity of the models
as expressed, for example, by the number of free parameters in each model.

Model complexity is important to consider because there is a trade-off between model fit and
generalizability (i.e. how well the model explains different data sets that were all generated from
the same underlying process). As the number of free parameters is increased, model fit increases
monotonically whereas beyond a certain point model generalizability decreases. The reason for
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this is “overfitting”: an increasingly complex model will, at some point, start to fit noise that
is specific to one data set and thus become less generalizable across multiple realizations of the
same underlying generative process.

Therefore, the question “What is the optimal model?” can be reformulated more precisely as
“What is the model that represents the best balance between fit and complexity?”. In a Bayesian
context, the latter question can be addressed by comparing the evidence, p(y|m), of different
models. According to Bayes theorem

p(θ|y, m) =
p(y|θ,m)p(θ|m)

p(y|m)
(32.7)

the model evidence can be considered as a normalization constant for the product of the likelihood
of the data and the prior probability of the parameters, therefore

p(y|m) =
∫

p(θ|y, m)p(θ|m)dθ (32.8)

Here, the number of free parameters (as well as the functional form) are considered by the
integration. Unfortunately, this integral cannot usually be solved analytically, therefore an ap-
proximation to the model evidence is needed. One such approximation used by DCM, and many
other models in SPM, is to make use of the Laplace approximation 1.

As shown in [70], this yields the following expression for the natural logarithm (ln) of the model
evidence ( ηθ|y denotes the posterior mean, Cθ|y is the posterior covariance of the parameters, Ce

is the error covariance, θp is the prior mean of the parameters, and Cp is the prior covariance):

lnp(y|m) = accuracy(m)− complexity(m) (32.9)

=
[
−1

2
ln|Ce| − 1

2
(y − h(u, ηθ|y))T C−1

e (y − h(u, ηθ|y))
]

−
[
1
2
ln|Cp| − 1

2
ln|Cθ|y|+ 1

2
(ηθ|y − θp)T C−1

p (ηθ|y − θp)
]

This expression properly reflects the requirement, as discussed above, that the optimal model
should represent the best compromise between model fit (accuracy) and model complexity. The
complexity term depends on the prior density, for example, the prior covariance of the intrinsic
connections.

Two models can then be compared using the Bayes factor:

BFij =
p(y|mi)
p(y|mj)

(32.10)

Given uniform priors over models, the posterior probability for model i is greater 0.95 if BFij is
greater than twenty.

This results in a robust procedure for deciding between competing hypotheses represented by
different DCMs. These hypotheses can concern any part of the structure of the modeled system,
e.g. the pattern of intrinsic connections or which inputs affect the system and where they enter.
Note, however, that this comparison is only valid if the data y are identical in all models. This
means that in DCM for fMRI, where the data vector results from a concatenation of the time series
of all areas in the model, only models can be compared that contain the same areas. Therefore,
model selection cannot be used to address whether or not to include a particular area in the
model. In contrast, in DCM for ERPs, the data measured at the sensor level are independent of
how many neuronal sources are assumed in a given model. Here, model selection could also be
used to decide which sources should be included.

32.3 Practical example

The following example refers to the “attention to visual motion” data set available from the SPM
web site2. This data set was obtained by Christian Buchel and is described in [13]. Note that the

1This should perhaps more correctly be referred to as a fixed-form variational approximation, where the fixed
form is chosen to be a Gaussian. The model evidence is approximated by the negative free energy, F .

2Attention to visual motion dataset: http://www.fil.ion.ucl.ac.uk/spm/data/attention/
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data available from the web have been pre-processed using SPM99, therefore ensure flip is set
to 1 in the spm flip analyze images.m file before proceeding further.

Making a DCM requires two ingredients: (i) a design matrix and (ii) the time series, stored
in VOI files. The regressors of the design matrix define the inputs for the DCM. Note that this
means that the design matrix that is optimal for a given DCM is often somewhat different than
the one for the corresponding GLM. DCM does not require the design matrix to be part of an
estimated model, however. It just needs to be defined.

32.3.1 Defining the GLM

The present experiment consisted of 4 conditions: (i) fixation (F), (ii) static (S, non-moving
dots), (iii) no attention (N, moving dots but no attention required), (iv) attention (A). The GLM
analyses by Christian showed that activity in area V5 was not only enhanced by moving stimuli,
but also by attention to motion. In the following, we will try to model this effect in V5, and
explain it as a context-dependent modulation or “enabling” of V5 afferents, using a DCM. First,
we need to set up the GLM analysis and extract our time series from the results. In this example,
we want to use the same design matrix for GLM and DCM, therefore we recombine the above
regressors to get the following three conditions:

1. photic: this comprises all conditions with visual input, i.e. S, N, and A.

2. motion: this includes all conditions with moving dots, i.e. N and A.

3. attention: this includes the attention-to-motion (A) condition only.

Now we need to define and estimate the GLM. See chapters 8 and 9 on how to do this. Here are
the relevant details for this data set that you need to set up the GLM (this information can also
be found online3 note this web site describes the analysis for SPM2).

• The onsets for the conditions can be found in the file factors.mat. They are named phot
(photic), mot (motion) and att (attention) and are defined in scans (not seconds!). They
are blocks of 10 TRs each.

• The TR is 3.22 seconds.

• There are 360 scans.

32.3.2 Extracting time series

Once you have specified and estimated the GLM, you should define t-contrasts that test for
photic, motion, and attention, respectively. These serve to locate areas that show effects due to
visual stimulation (e.g. in V1), motion (e.g. V5) and attention (e.g. V5 and superior parietal
cortex, SPC). Because V5 shows both motion and attention effects, it is useful to mask the
motion-contrast inclusively with the attention-contrast when extracting time series for V5. You
should also compute the usual “effects of interest” F-contrast, this is needed for mean-correcting
the extracted time series (see below). Here is a step-by-step example for extracting the V5 time
series:

1. Press “Results”.

2. Select the SPM.mat file.

3. Choose the t-contrast for the motion condition.

4. Mask with other contrasts: Yes

5. Choose the t-contrast for the attention condition.

6. Mask inclusively and choose a threshold of p ≤ 0.05 uncorrected.

3ftp://ftp.fil.ion.ucl.ac.uk/spm/data/attention/README_GLM_DCM.txt
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7. Select the local maximum of a blob that looks V5-ish, e.g. -45/-81/-9 (by overlaying the
activations onto the normalised structural image you should be able to identify V5 more
easily).

8. Press the “VOI” button.

9. Name of region: V5

10. Adjust data for: effects of interest (this mean-corrects the time series)

11. VOI definition: sphere

12. VOI radius(mm): e.g. 8 mm

SPM now computes the first principal component of the time series from all voxels included in the
sphere. The result is stored (together with the original time series) in a file named VOI_V5_1.mat
in the working directory. You can now proceed to select time series for V1 (using the “photic”
contrast) and SPC (using the “attention” contrast). For this example, we selected -6/-84/-6 for
V1 and -18/-57/66 for SPC.

32.3.3 Specifying and estimating the DCM

Now we have defined the inputs (via the design matrix) and the time series, we are ready to build
the DCM. We will look at a simplified version of the model described in [29]. In our example
here, we will model a hierarchically connected system comprising V1, V5 and SPC, i.e. reciprocal
connections between V1-V5 and V5-SPC, but not between V1-SPC. We will assume that (i) V1
is driven by any kind of visual stimulation (direct input “photic”), (ii) motion-related responses
in V5 can be explained through an increase in the influence of V1 onto V5 whenever the stimuli
are moving (i.e. “motion” acts as modulatory input onto the V 1 → V 5 connection) and (iii)
attention enhances the influence of SPC onto V5 (i.e. “attention” acts as modulatory input onto
the SPC → V 5 connection). This DCM is shown schematically in Figure 32.4, and can be made
as follows:

Figure 32.4: DCM with attentional modulation of backwards connection. Dotted lines denote
modulatory connections.

1. Press the DCM button.

2. Choose “specify”.
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3. Select the SPM.mat file you just created when specifying the GLM.

4. Name for DCM_???.mat: e.g. mod_bwd (for “attentional modulation of backward connec-
tion”)

5. Select all VOIs in order VOI_V1_1, VOI_V5_1, VOI_SPC_1

6. Include Photic: Yes

7. Include Motion: Yes

8. Include Attention: Yes

9. Define the following intrinsic connections: V1 to V5, V5 to V1, V5 to SPC, SPC to V5, i.e.
a hierarchy with reciprocal connections between neighbouring areas. Note that the columns
specify the source of the connection and the rows specify its target. Your connectivity
matrix should look like the one in Fig. 32.5.

10. Specify Photic as a driving input into V1. See Fig. 32.6

11. Specify Motion to modulate the connection from V1 to V5. See Fig. 32.7

12. Specify Attention to modulate the connection from SPC to V5. See Fig. 32.8

13. Say No for “Nonlinear DCM?”

14. Specify slice timings for each area. This is a new option described in [54]. The default
values are set to the last slice of the data, which was the default in the original DCM
version. For sequential (as opposed to interleaved) data, this modelling option allows to
use DCM in combination with any TR (slice timing differences). Here, we proceed with the
default values.

15. Enter 0.04 for “Echo Time, TE[s]”.

A polite “Thank you” completes the model specification process.

Figure 32.5: Filled circles define the structure of the intrinsic connections C such that eg. there
are no connections from V1R to SPCR or from SPCR to V1R. See also Fig 32.4.

You can now estimate the model parameters, either by pressing the DCM button again and
choosing “estimate”, or by typing spm_dcm_estimate(’DCM_mod_bwd’) from the Matlab com-
mand line. Once this is completed, you can review the results as follows:
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Figure 32.6: The filled circle specifies that the input ‘phot’ connects to region V1R. See also
Fig 32.4.

1. Press the DCM button.

2. Choose “review”.

3. Select DCM_mod_bwd

4. Threshold: 0

Now you have multiple options, e.g. you can revisit the fit of the model (“Outputs”) or look at
the parameter estimates for the intrinsic connections (“Intrinsic connections”) or for the param-
eters associated with the driving or modulatory inputs (“Effects of Photic”, “Effects of Motion”,
“Effects of Attention”).

Also, you can use the “Contrasts” option to determine how confident you can be that a
contrast of certain parameter estimates exceeds the threshold you chose in step 4. Of course,
you can also explore the model results at the level of the Matlab command line by loading the
model and inspecting the parameter estimates directly. These can be found in DCM.A (intrinsic
connections), DCM.B (modulatory inputs) and DCM.C (driving inputs).

32.3.4 Comparing models

Let us now specify an alternative model and compare it against the one that we defined and
estimated above. The change that we are going to make is to assume that attention modulates
the V 1 → V 5 connection (as opposed to the SPC → V 5 connection in the previous model). For
defining this model, you repeat all the steps from the above example, the only differences being
that the model gets a new name (e.g. mod_fwd) and that attention now acts on the forward
connection. This DCM is shown schematically in Figure 32.9. Once you have estimated this new
model, you can perform a Bayesian model comparison as follows:

1. Press the “DCM” button.

2. Choose “compare”.

3. Number of models to compare: 2

4. Select the two models, e.g. in the order DCM_mod_bwd and DCM_mod_fwd.

The Graphics window, Fig. 32.10, now shows a bar plot of the model evidence. You can see
that our second model is better than the first one.
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Figure 32.7: The filled circle indicates that the input variable ‘mot’ can modulate the connection
from V1R to V5R. This specifies a ‘modulatory’ connection. See also Fig 32.4.

Figure 32.8: The filled circle indicates that attention can modulate the connection from SPCR to
V5R. See also Fig 32.4.
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Figure 32.9: DCM with attentional modulation of forwards connection. Dotted lines denote mod-
ulatory connections.

Figure 32.10: Model 2 (shown in Fig 32.9) is preferred to model 1 (shown in Fig 32.4).
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